Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2313820121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598343

RESUMO

In primates, high-acuity vision is mediated by the fovea, a small specialized central region of the retina. The fovea, unique to the anthropoid lineage among mammals, undergoes notable neuronal morphological changes during postnatal maturation. However, the extent of cellular similarity across anthropoid foveas and the molecular underpinnings of foveal maturation remain unclear. Here, we used high-throughput single-cell RNA sequencing to profile retinal cells of the common marmoset (Callithrix jacchus), an early divergent in anthropoid evolution from humans, apes, and macaques. We generated atlases of the marmoset fovea and peripheral retina for both neonates and adults. Our comparative analysis revealed that marmosets share almost all their foveal types with both humans and macaques, highlighting a conserved cellular structure among primate foveas. Furthermore, by tracing the developmental trajectory of cell types in the foveal and peripheral retina, we found distinct maturation paths for each. In-depth analysis of gene expression differences demonstrated that cone photoreceptors and Müller glia (MG), among others, show the greatest molecular divergence between these two regions. Utilizing single-cell ATAC-seq and gene-regulatory network inference, we uncovered distinct transcriptional regulations differentiating foveal cones from their peripheral counterparts. Further analysis of predicted ligand-receptor interactions suggested a potential role for MG in supporting the maturation of foveal cones. Together, these results provide valuable insights into foveal development, structure, and evolution.


Assuntos
Callithrix , Retina , Humanos , Animais , Recém-Nascido , Callithrix/anatomia & histologia , Retina/metabolismo , Fóvea Central/fisiologia , Células Fotorreceptoras Retinianas Cones , Macaca , Mamíferos
2.
Cell ; 187(6): 1547-1562.e13, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38428424

RESUMO

We sequenced and assembled using multiple long-read sequencing technologies the genomes of chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, owl monkey, and marmoset. We identified 1,338,997 lineage-specific fixed structural variants (SVs) disrupting 1,561 protein-coding genes and 136,932 regulatory elements, including the most complete set of human-specific fixed differences. We estimate that 819.47 Mbp or ∼27% of the genome has been affected by SVs across primate evolution. We identify 1,607 structurally divergent regions wherein recurrent structural variation contributes to creating SV hotspots where genes are recurrently lost (e.g., CARD, C4, and OLAH gene families) and additional lineage-specific genes are generated (e.g., CKAP2, VPS36, ACBD7, and NEK5 paralogs), becoming targets of rapid chromosomal diversification and positive selection (e.g., RGPD gene family). High-fidelity long-read sequencing has made these dynamic regions of the genome accessible for sequence-level analyses within and between primate species.


Assuntos
Genoma , Primatas , Animais , Humanos , Sequência de Bases , Primatas/classificação , Primatas/genética , Evolução Biológica , Análise de Sequência de DNA , Variação Estrutural do Genoma
3.
Heliyon ; 10(5): e25910, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449613

RESUMO

Background: In vivo two-photon imaging is a reliable method with high spatial resolution that allows observation of individual neuron and dendritic activity longitudinally. Neurons in local brain regions can be influenced by global brain states such as levels of arousal and attention that change over relatively short time scales, such as minutes. As such, the scientific rigor of investigating regional neuronal activities could be enhanced by considering the global brain state. New method: In order to assess the global brain state during in vivo two-photon imaging, CBRAIN (collective brain research platform aided by illuminating neural activity), a wireless EEG collecting and labeling device, was controlled by the same computer of two-photon microscope. In an experiment to explore neuronal responses to isoflurane anesthesia through two-photon imaging, we investigated whether the response of individual cells correlated with concurrent EEG changes induced by anesthesia. Results: In two-photon imaging, calcium activities of the excitatory neurons in the primary somatosensory cortex disappeared in about 30s after to the initiation of isoflurane anesthesia. The simultaneously recorded EEG showed various transitional activity for about 7 min from the initiation of anesthesia and continued with burst and suppression alternating pattern thereafter. As such, there was a dissociation between excitatory neuron activity of the primary somatosensory cortex and the global brain activity under anesthesia. Comparison with existing methods: Existing methods to combine two-photon and EEG recording used wired EEG recording. In this study, wireless EEG was used in conjunction with two-photon imaging, facilitated by CBRAIN. More importantly, built-in algorithms of the CBRAIN can automatically detect brain state such as sleep. The codes used for EEG classification are easy to use, with no prior experience required. Conclusion: Simultaneous recording of wireless EEG and two-photon imaging provides a practical way to capture individual neuronal activities with respect to global brain state in an experimental set-up.

4.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38260581

RESUMO

Optimizing behavioral strategy requires belief updating based on new evidence, a process that engages higher cognition. In schizophrenia, aberrant belief dynamics may lead to psychosis, but the mechanisms underlying this process are unknown, in part, due to lack of appropriate animal models and behavior readouts. Here, we address this challenge by taking two synergistic approaches. First, we generate a mouse model bearing patient-derived point mutation in Grin2a (Grin2aY700X+/-), a gene that confers high-risk for schizophrenia and recently identified by large-scale exome sequencing. Second, we develop a computationally trackable foraging task, in which mice form and update belief-driven strategies in a dynamic environment. We found that Grin2aY700X+/- mice perform less optimally than their wild-type (WT) littermates, showing unstable behavioral states and a slower belief update rate. Using functional ultrasound imaging, we identified the mediodorsal (MD) thalamus as hypofunctional in Grin2aY700X+/- mice, and in vivo task recordings showed that MD neurons encoded dynamic values and behavioral states in WT mice. Optogenetic inhibition of MD neurons in WT mice phenocopied Grin2aY700X+/- mice, and enhancing MD activity rescued task deficits in Grin2aY700X+/- mice. Together, our study identifies the MD thalamus as a key node for schizophrenia-relevant cognitive dysfunction, and a potential target for future therapeutics.

5.
Nat Neurosci ; 27(2): 373-383, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212587

RESUMO

Rabies-virus-based monosynaptic tracing is a widely used technique for mapping neural circuitry, but its cytotoxicity has confined it primarily to anatomical applications. Here we present a second-generation system for labeling direct inputs to targeted neuronal populations with minimal toxicity, using double-deletion-mutant rabies viruses. Viral spread requires expression of both deleted viral genes in trans in postsynaptic source cells. Suppressing this expression with doxycycline following an initial period of viral replication reduces toxicity to postsynaptic cells. Longitudinal two-photon imaging in vivo indicated that over 90% of both presynaptic and source cells survived for the full 12-week course of imaging. Ex vivo whole-cell recordings at 5 weeks postinfection showed that the second-generation system perturbs input and source cells much less than the first-generation system. Finally, two-photon calcium imaging of labeled networks of visual cortex neurons showed that their visual response properties appeared normal for 10 weeks, the longest we followed them.


Assuntos
Vírus da Raiva , Vírus da Raiva/genética , Neurônios/fisiologia , Replicação Viral
8.
Nature ; 624(7991): 403-414, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092914

RESUMO

The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.


Assuntos
Encéfalo , Perfilação da Expressão Gênica , Vias Neurais , Neurônios , Medula Espinal , Animais , Camundongos , Hipotálamo , Neurônios/metabolismo , Neuropeptídeos , Medula Espinal/citologia , Medula Espinal/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Neurotransmissores , Mesencéfalo/citologia , Formação Reticular/citologia , Eletrofisiologia , Cerebelo/citologia , Córtex Cerebral/citologia
9.
Nature ; 624(7991): 390-402, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092918

RESUMO

Divergence of cis-regulatory elements drives species-specific traits1, but how this manifests in the evolution of the neocortex at the molecular and cellular level remains unclear. Here we investigated the gene regulatory programs in the primary motor cortex of human, macaque, marmoset and mouse using single-cell multiomics assays, generating gene expression, chromatin accessibility, DNA methylome and chromosomal conformation profiles from a total of over 200,000 cells. From these data, we show evidence that divergence of transcription factor expression corresponds to species-specific epigenome landscapes. We find that conserved and divergent gene regulatory features are reflected in the evolution of the three-dimensional genome. Transposable elements contribute to nearly 80% of the human-specific candidate cis-regulatory elements in cortical cells. Through machine learning, we develop sequence-based predictors of candidate cis-regulatory elements in different species and demonstrate that the genomic regulatory syntax is highly preserved from rodents to primates. Finally, we show that epigenetic conservation combined with sequence similarity helps to uncover functional cis-regulatory elements and enhances our ability to interpret genetic variants contributing to neurological disease and traits.


Assuntos
Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Mamíferos , Neocórtex , Animais , Humanos , Camundongos , Callithrix/genética , Cromatina/genética , Cromatina/metabolismo , Sequência Conservada/genética , Metilação de DNA , Elementos de DNA Transponíveis/genética , Epigenoma , Regulação da Expressão Gênica/genética , Macaca/genética , Mamíferos/genética , Córtex Motor/citologia , Córtex Motor/metabolismo , Multiômica , Neocórtex/citologia , Neocórtex/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Célula Única , Fatores de Transcrição/metabolismo , Variação Genética/genética
10.
bioRxiv ; 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38106142

RESUMO

In primates, high-acuity vision is mediated by the fovea, a small specialized central region of the retina. The fovea, unique to the anthropoid lineage among mammals, undergoes notable neuronal morphological changes during postnatal maturation. However, the extent of cellular similarity across anthropoid foveas and the molecular underpinnings of foveal maturation remain unclear. Here, we used high throughput single cell RNA sequencing to profile retinal cells of the common marmoset ( Callithrix jacchus ), an early divergent in anthropoid evolution from humans, apes, and macaques. We generated atlases of the marmoset fovea and peripheral retina for both neonates and adults. Our comparative analysis revealed that marmosets share almost all its foveal types with both humans and macaques, highlighting a conserved cellular structure among primate foveas. Furthermore, by tracing the developmental trajectory of cell types in the foveal and peripheral retina, we found distinct maturation paths for each. In-depth analysis of gene expression differences demonstrated that cone photoreceptors and Müller glia, among others, show the greatest molecular divergence between these two regions. Utilizing single-cell ATAC-seq and gene-regulatory network inference, we uncovered distinct transcriptional regulations differentiating foveal cones from their peripheral counterparts. Further analysis of predicted ligand-receptor interactions suggested a potential role for Müller glia in supporting the maturation of foveal cones. Together, these results provide valuable insights into foveal development, structure, and evolution. Significance statement: The sharpness of our eyesight hinges on a tiny retinal region known as the fovea. The fovea is pivotal for primate vision and is susceptible to diseases like age-related macular degeneration. We studied the fovea in the marmoset-a primate with ancient evolutionary ties. Our data illustrated the cellular and molecular composition of its fovea across different developmental ages. Our findings highlighted a profound cellular consistency among marmosets, humans, and macaques, emphasizing the value of marmosets in visual research and the study of visual diseases.

12.
Cell Rep Methods ; 3(11): 100644, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37989085

RESUMO

Rabies viral vectors have become important components of the systems neuroscience toolkit, allowing both direct retrograde targeting of projection neurons and monosynaptic tracing of inputs to defined postsynaptic populations, but the rapid cytotoxicity of first-generation (ΔG) vectors limits their use to short-term experiments. We recently introduced second-generation, double-deletion-mutant (ΔGL) rabies viral vectors, showing that they efficiently retrogradely infect projection neurons and express recombinases effectively but with little to no detectable toxicity; more recently, we have shown that ΔGL viruses can be used for monosynaptic tracing with far lower cytotoxicity than the first-generation system. Here, we introduce third-generation (ΔL) rabies viral vectors, which appear to be as nontoxic as second-generation ones but have the major advantage of growing to much higher titers, resulting in significantly increased numbers of retrogradely labeled neurons in vivo.


Assuntos
Vírus da Raiva , Raiva , Humanos , Vírus da Raiva/genética , Interneurônios , Vetores Genéticos/genética , Neurônios
13.
Cell Rep ; 42(11): 113384, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37934666

RESUMO

Deletion of the obsessive-compulsive disorder (OCD)-associated gene SAP90/PSD-95-associated protein 3 (Sapap3), which encodes a postsynaptic anchoring protein at corticostriatal synapses, causes OCD-like motor behaviors in mice. While corticostriatal synaptic dysfunction is central to this phenotype, the striatum efficiently adapts to pathological changes, often in ways that expand upon the original circuit impairment. Here, we show that SAPAP3 deletion causes non-synaptic and pathway-specific alterations in dorsolateral striatum circuit function. While somatic excitability was elevated in striatal projection neurons (SPNs), dendritic excitability was exclusively enhanced in direct pathway SPNs. Layered on top of this, cholinergic modulation was altered in opposing ways: striatal cholinergic interneuron density and evoked acetylcholine release were elevated, while basal muscarinic modulation of SPNs was reduced. These data describe how SAPAP3 deletion alters the striatal landscape upon which impaired corticostriatal inputs will act, offering a basis for how pathological synaptic integration and unbalanced striatal output underlying OCD-like behaviors may be shaped.


Assuntos
Proteínas do Tecido Nervoso , Transtorno Obsessivo-Compulsivo , Camundongos , Animais , Proteínas do Tecido Nervoso/metabolismo , Corpo Estriado/metabolismo , Neostriado/metabolismo , Transtorno Obsessivo-Compulsivo/genética , Colinérgicos/metabolismo
14.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37904944

RESUMO

Chimerism happens rarely among most mammals but is common in marmosets and tamarins, a result of fraternal twin or triplet birth patterns in which in utero connected circulatory systems (through which stem cells transit) lead to persistent blood chimerism (12-80%) throughout life. The presence of Y-chromosome DNA sequences in other organs of female marmosets has long suggested that chimerism might also affect these organs. However, a longstanding question is whether this chimerism is driven by blood-derived cells or involves contributions from other cell types. To address this question, we analyzed single-cell RNA-seq data from blood, liver, kidney and multiple brain regions across a number of marmosets, using transcribed single nucleotide polymorphisms (SNPs) to identify cells with the sibling's genome in various cell types within these tissues. Sibling-derived chimerism in all tissues arose entirely from cells of hematopoietic origin (i.e., myeloid and lymphoid lineages). In brain tissue this was reflected as sibling-derived chimerism among microglia (20-52%) and macrophages (18-64%) but not among other resident cell types (i.e., neurons, glia or ependymal cells). The percentage of microglia that were sibling-derived showed significant variation across brain regions, even within individual animals, likely reflecting distinct responses by siblings' microglia to local recruitment or proliferation cues or, potentially, distinct clonal expansion histories in different brain areas. In the animals and tissues we analyzed, microglial gene expression profiles bore a much stronger relationship to local/host context than to sibling genetic differences. Naturally occurring marmoset chimerism will provide new ways to understand the effects of genes, mutations and brain contexts on microglial biology and to distinguish between effects of microglia and other cell types on brain phenotypes.

15.
Nat Commun ; 14(1): 6696, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880241

RESUMO

Chronic pain is highly prevalent and is linked to a broad range of comorbidities, including sleep disorders. Epidemiological and clinical evidence suggests that chronic sleep disruption (CSD) leads to heightened pain sensitivity, referred to as CSD-induced hyperalgesia. However, the underlying mechanisms are unclear. The thalamic reticular nucleus (TRN) has unique integrative functions in sensory processing, attention/arousal and sleep spindle generation. We report that the TRN played an important role in CSD-induced hyperalgesia in mice, through its projections to the ventroposterior region of the thalamus. Metabolomics revealed that the level of N-arachidonoyl dopamine (NADA), an endocannabinoid, was decreased in the TRN after CSD. Using a recently developed CB1 receptor (cannabinoid receptor 1) activity sensor with spatiotemporal resolution, CB1 receptor activity in the TRN was found to be decreased after CSD. Moreover, CSD-induced hyperalgesia was attenuated by local NADA administration to the TRN. Taken together, these results suggest that TRN NADA signaling is critical for CSD-induced hyperalgesia.


Assuntos
Dopamina , Endocanabinoides , Camundongos , Animais , Dopamina/farmacologia , Hiperalgesia , Receptor CB1 de Canabinoide , Núcleos Talâmicos , Sono
16.
Sci Adv ; 9(41): eadk3986, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824615

RESUMO

The mammalian brain is composed of many brain structures, each with its own ontogenetic and developmental history. We used single-nucleus RNA sequencing to sample over 2.4 million brain cells across 18 locations in the common marmoset, a New World monkey primed for genetic engineering, and examined gene expression patterns of cell types within and across brain structures. The adult transcriptomic identity of most neuronal types is shaped more by developmental origin than by neurotransmitter signaling repertoire. Quantitative mapping of GABAergic types with single-molecule FISH (smFISH) reveals that interneurons in the striatum and neocortex follow distinct spatial principles, and that lateral prefrontal and other higher-order cortical association areas are distinguished by high proportions of VIP+ neurons. We use cell type-specific enhancers to drive AAV-GFP and reconstruct the morphologies of molecularly resolved interneuron types in neocortex and striatum. Our analyses highlight how lineage, local context, and functional class contribute to the transcriptional identity and biodistribution of primate brain cell types.


Assuntos
Callithrix , Neocórtex , Animais , Neocórtex/fisiologia , Neurônios/fisiologia , Distribuição Tecidual
17.
Science ; 382(6667): eade9516, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824638

RESUMO

The cognitive abilities of humans are distinctive among primates, but their molecular and cellular substrates are poorly understood. We used comparative single-nucleus transcriptomics to analyze samples of the middle temporal gyrus (MTG) from adult humans, chimpanzees, gorillas, rhesus macaques, and common marmosets to understand human-specific features of the neocortex. Human, chimpanzee, and gorilla MTG showed highly similar cell-type composition and laminar organization as well as a large shift in proportions of deep-layer intratelencephalic-projecting neurons compared with macaque and marmoset MTG. Microglia, astrocytes, and oligodendrocytes had more-divergent expression across species compared with neurons or oligodendrocyte precursor cells, and neuronal expression diverged more rapidly on the human lineage. Only a few hundred genes showed human-specific patterning, suggesting that relatively few cellular and molecular changes distinctively define adult human cortical structure.


Assuntos
Cognição , Hominidae , Neocórtex , Lobo Temporal , Animais , Humanos , Perfilação da Expressão Gênica , Gorilla gorilla/genética , Hominidae/genética , Hominidae/fisiologia , Macaca mulatta/genética , Pan troglodytes/genética , Filogenia , Transcriptoma , Neocórtex/fisiologia , Especificidade da Espécie , Lobo Temporal/fisiologia
18.
bioRxiv ; 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37066152

RESUMO

Sequence divergence of cis- regulatory elements drives species-specific traits, but how this manifests in the evolution of the neocortex at the molecular and cellular level remains to be elucidated. We investigated the gene regulatory programs in the primary motor cortex of human, macaque, marmoset, and mouse with single-cell multiomics assays, generating gene expression, chromatin accessibility, DNA methylome, and chromosomal conformation profiles from a total of over 180,000 cells. For each modality, we determined species-specific, divergent, and conserved gene expression and epigenetic features at multiple levels. We find that cell type-specific gene expression evolves more rapidly than broadly expressed genes and that epigenetic status at distal candidate cis -regulatory elements (cCREs) evolves faster than promoters. Strikingly, transposable elements (TEs) contribute to nearly 80% of the human-specific cCREs in cortical cells. Through machine learning, we develop sequence-based predictors of cCREs in different species and demonstrate that the genomic regulatory syntax is highly preserved from rodents to primates. Lastly, we show that epigenetic conservation combined with sequence similarity helps uncover functional cis -regulatory elements and enhances our ability to interpret genetic variants contributing to neurological disease and traits.

19.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945442

RESUMO

To better understand the pattern of primate genome structural variation, we sequenced and assembled using multiple long-read sequencing technologies the genomes of eight nonhuman primate species, including New World monkeys (owl monkey and marmoset), Old World monkey (macaque), Asian apes (orangutan and gibbon), and African ape lineages (gorilla, bonobo, and chimpanzee). Compared to the human genome, we identified 1,338,997 lineage-specific fixed structural variants (SVs) disrupting 1,561 protein-coding genes and 136,932 regulatory elements, including the most complete set of human-specific fixed differences. Across 50 million years of primate evolution, we estimate that 819.47 Mbp or ~27% of the genome has been affected by SVs based on analysis of these primate lineages. We identify 1,607 structurally divergent regions (SDRs) wherein recurrent structural variation contributes to creating SV hotspots where genes are recurrently lost (CARDs, ABCD7, OLAH) and new lineage-specific genes are generated (e.g., CKAP2, NEK5) and have become targets of rapid chromosomal diversification and positive selection (e.g., RGPDs). High-fidelity long-read sequencing has made these dynamic regions of the genome accessible for sequence-level analyses within and between primate species for the first time.

20.
J Comp Neurol ; 531(5): 584-595, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36606699

RESUMO

Identification of synaptic partners is a fundamental task for systems neuroscience. To date, few reliable techniques exist for whole brain labeling of downstream synaptic partners in a cell-type-dependent and monosynaptic manner. Herein, we describe a novel monosynaptic anterograde tracing system based on the deletion of the gene UL6 from the genome of a cre-dependent version of the anterograde Herpes Simplex Virus 1 strain H129. Given that this knockout blocks viral genome packaging and thus viral spread, we reasoned that co-infection of a HSV H129 ΔUL6 virus with a recombinant adeno-associated virus expressing UL6 in a cre-dependent manner would result in monosynaptic spread from target cre-expressing neuronal populations. Application of this system to five nonreciprocal neural circuits resulted in labeling of neurons in expected projection areas. While some caveats may preclude certain applications, this system provides a reliable method to label postsynaptic partners in a brain-wide fashion.


Assuntos
Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Neurônios , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...